Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 242(0): 301-325, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36222171

RESUMO

Catalytic activity and toxicity of mixed-metal nanoparticles have been shown to correlate and are known to be dependent on surface composition. The surface chemistry of the fully inorganic, ligand-free silver-gold alloy nanoparticle molar fraction series, is highly interesting for applications in heterogeneous catalysis, which is determined by active surface sites which are also relevant for understanding their dissolution behavior in biomedically-relevant ion-release scenarios. However, such information has never been systematically obtained for colloidal nanoparticles without organic surface ligands and has to date, not been analyzed in a surface-normalized manner to exclude density effects. For this, we used detailed electrochemical measurements based on cyclic voltammetry to systematically analyze the redox chemistry of particle-surface-normalized gold-silver alloy nanoparticles with varying gold molar fractions. The study addressed a broad range of gold molar fractions (Ag90Au10, Ag80Au20, Ag70Au30, Ag50Au50, Ag40Au60, and Ag20Au80) as well as monometallic Ag and Au nanoparticle controls. Oxygen reduction reaction (ORR) measurements in O2 saturated 0.1 M KOH revealed a linear reduction of the overpotential with increasing gold content on the surface, probably attributed to the higher ORR activity of gold over silver, verified by monometallic Ag and Au controls. These findings were complemented by detailed XPS studies revealing an accumulation of the minor constituent of the alloy on the surface, e.g., silver surface enrichment in gold-rich particles. Furthermore, highly oxidized Ag surface site enrichment was detected after the ORR reaction, most pronounced in gold-rich alloys. Further, detailed CV studies at acidic pH, analyzing the position, onset potential, and peak integrals of silver oxidation and silver reduction peaks revealed particularly low reactivity and high chemical stability of the equimolar Au50Ag50 composition, a phenomenon attributed to the outstanding thermodynamic, entropically driven, stabilization arising at this composition.

2.
Nanotechnology ; 31(9): 095603, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31703230

RESUMO

High-power, nanosecond, pulsed-laser ablation in liquids enables the continuous synthesis of highly pure colloidal nanoparticles (NPs) at an application-relevant scale. The gained mass-weighted particle size distribution is however often reported to be broad, requiring post treatment like centrifugation to remove undesired particle size fractions. To date, available centrifugation techniques are generally discontinuous, limiting the throughput and hindering economic upscaling. Hence, throughout this paper, a scalable, continuously operating centrifugation of laser-generated platinum NPs in a tubular bowl centrifuge is reported for the first time. To that end, using a 121 W ns-laser, the continuous production of a colloidal suspension of NPs, yet with broad particle size distribution has been employed, yielding productivities of 1-2 g h-1 for gold, silver, and platinum. The power-specific productivities (Au: 18 mg h-1 W-1, Pt: 13 mg h-1 W-1, Ag: 8 mg h-1 W-1, Ni: 6 mg h-1 W-1) are far higher than reported before. Subsequent downstream integration of a continuously operating tubular bowl centrifuge was successfully achieved for Pt NPs allowing the removal of undesired particle size with high throughput. By means of a systematic study of relevant centrifugation parameters involved, effective size optimization and respective size sharpness parameters for a maximum Pt NP diameter of 10 nm are reported. The results of the experimental centrifugation of laser-generated Pt NPs were in excellent agreement with the theoretically calculated cut-off diameter. After centrifugation with optimized parameters (residence time of 5 min; g-force of 38,454 g), the polydispersity indices of the Pt NPs size distributions were reduced by a factor of six, and high monodispersity was observed.

4.
ACS Appl Mater Interfaces ; 9(11): 9996-10002, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28282112

RESUMO

For exerting potential catalytic and photocatalytic activities of metal nanoparticles (MNPs), immobilization of MNPs on a support medium in highly dispersed state is desired. In this Research Article, we demonstrated that surfactant-free platinum nanoparticles (PtNPs) were efficiently immobilized on graphene oxide (GO) nanosheets in a highly dispersed state by utilizing oligopeptide ß-sheets as a cross-linker. The fluorenyl-substituted peptides were designed to form ß-sheets, where metal-binding thiol groups and protonated and positively charged amino groups are integrated on the opposite sides of the surface of a ß-sheet, which efficiently bridge PtNPs and GO nanosheet. In comparison to PtNP/GO composite without the peptide linker, the PtNP/peptide/GO ternary complex exhibited excellent photocatalytic dye degradation activity via electron transfer from GO to PtNP and simultaneous hole transfer from oxidized GO to the dye. Furthermore, the ternary complex showed photoinduced hydrogen evolution upon visible light irradiation using a hole scavenger. This research provides a new methodology for the development of photocatalytic materials by a bottom-up strategy on the basis of self-assembling features of biomolecules.

5.
Chemphyschem ; 2017 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28191722

RESUMO

This study involves the preparation and catalytic properties of anatase titanium dioxide nanofibers (TiO2 NFs) supported gold nanoparticles (Au NPs) using a model reaction based on the reduction of 4-nitrophenol (NP) into 4-aminophenol (AP) by sodium borohydride (NaBH4). The fabrication of surfactant-free Au NPs was performed using pulsed laser ablation in liquid (PLAL) technique. The TiO2 NFs were fabricated by a combination of electrospinning and calcination process using a solution containing poly(vinyl pyrolidone)(PVP) and titanium isopropoxide. The adsorption efficiency of laser-generated surfactant-free Au NPs to TiO2 NF supports as a function of pH was analyzed. Our results show that the electrostatic interaction mainly controls the adsorption of the nanoparticles. Au NPs/TiO2 NFs composite exhibited good catalytic activity for the reduction of 4-NP to 4-AP. The unique combination of these materials leads to the development of highly efficient catalysts. Our heterostructured nanocatalysts possibly form an efficient path to fabricate various metal NP/metal-oxide supported catalysts. Thus the applications of PLAL-noble metal NPs can widely broaden.

6.
Chemphyschem ; 18(9): 1084-1090, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28029740

RESUMO

The ablation yield and bubble-formation process during nanosecond pulsed-laser ablation of silver in water are analysed by stroboscopic videography, time-resolved X-ray radiography and in situ UV/Vis spectroscopy. This process is studied as function of lens-target distance and laser fluence. Both the ablation yield and the bubble-cavitation process exhibit threshold behaviour as a function of fluence, which is linked to the efficiency of coupling of energy at the water/target interface. Although ablation happens below this threshold, quantitative material emission is linked to bubble formation. Above the threshold, both bubble size and ablation show linear behaviour.

7.
Phys Chem Chem Phys ; 18(24): 16585-93, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27273693

RESUMO

Laser-induced cavitation has mostly been studied in bulk liquid or at a two-dimensional wall, although target shapes for the particle synthesis may strongly affect bubble dynamics and interfere with particle productivity. We investigated the dynamics of the cavitation bubble induced by pulsed-laser ablation in liquid for different target geometries with high-speed laser microsecond videography and focus on the collapse behaviour. This method enables us observations in a high time resolution (intervals of 1 µs) and single-pulse experiments. Further, we analyzed the nanoparticle productivity, the sizes of the synthesized nanoparticles and the evolution of the bubble volume for each different target shape and geometry. For the ablation of metal (Ag, Cu, Ni) wire tips a springboard-like behaviour after the first collapse is observed which can be correlated with vertical projectile motion. Its turbulent friction in the liquid causes a very efficient transport and movement of the bubble and ablated material into the bulk liquid and prevents particle redeposition. This effect is influenced by the degree of freedom of the wire as well as the material properties and dimensions, especially the Young's modulus. The most efficient and largest bubble movement away from the wire was observed for a thin (500 µm) silver wire with velocities up to 19.8 m s(-1) and for materials with a small Young's modulus and flexural rigidity. We suggest that these observations may contribute to upscaling strategies and increase of particle yield towards large synthesis of colloids based on targets that may continuously be fed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...